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Abstract In order to enhance the resolution of an existing
genetic map of rice, and to obtain a comprehensive picture
of marker utility and genomic distribution of microsatel-
lites in this important grain species, rice DNA sequences
containing simple sequence repeats (SSRs) were extracted
from several small-insert genomic libraries and from the
database. One hundred and eighty eight new microsatellite
markers were devel oped and evaluated for alelic diversity.
The new simple sequence length polymorphisms (SSLPs)
were incorporated into the existing map previoudy con-
taining 124 SSR loci. The 312 microsatellite markers re-
ported here provide whole-genome coverage with an aver-
age density of one SSLP per 6 cM. In this study, 26 SSLP
markers were identified in published sequences of known
genes, 65 were devel oped based on partial cDNA sequenc-
es available in GenBank, and 97 were isolated from ge-
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nomic libraries. Microsatellite markers with different SSR
motifs are relatively uniformly distributed along rice chro-
mosomes regardless of whether they were derived from ge-
nomic clones or cDNA sequences. However, the distribu-
tion of polymorphism detected by these markers varies be-
tween different regions of the genome.

Key words Microsatellite markers - Genetic map -
Allelic diversity - Genome organization - Rice (Oryza
sativa L.)

Introduction

Microsatellite markers based on the variation in the num-
ber of simple sequence DNA repeats (SSRs) have be-
come the markers of choice for a wide spectrum of ge-
netic, population, and evolutionary studies (Jarne and
Lagoda 1996; Powell et al. 1996). Significant progress
has been made in the development of second-generation
genetic maps based on these abundant and highly poly-
morphic markers for many different species, including
human (Dib et al. 1996), mouse (Dietrich et al. 1996), rat
(Serikawa et al. 1992; Jacob et al. 1995), dog (Mellersh
et a. 1997) chicken (Groenen et a. 1998), and plants
such as wheat (Bryan et al. 1997; Roder et al. 1998),
maize (Chin et al. 1996; Taramino and Tingey 1996), po-
tato (Milbourne et al. 1998), and soybean (Akkaya et al.
1995; Cregan et al. 1999).

Studies in various organisms provide evidence that
the number of microsatellite sequences in a genome,
their length, composition, mutation rate and chromosom-
al distribution can vary drastically among taxa. This has
implications for SSLP marker development. For in-
stance, CA/GT short-sequence repeats, which are the
most abundant and variable class of microsatellites in
mammalian genomes, are generally less frequent and
less variable in plant genomes (Powell et al. 1996). In
Arabidopsis, CA/GT microsatellites are poorly repre-
sented (Depeiges et al. 1995) and show a very low level
of variability (Bell and Ecker 1994). In sugar beet, GT-
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containing microsatellite sequences are part of a more
complex repeating element which is present in multiple
copies near centromeres and thus have limited potential
for mapping purposes (Schmidt and Heslop-Harrison
1996). However, successful development of many infor-
mative SSLP markers based on this GT/CA SSR motif
for maize (Chin et a. 1996; Taramino and Tingey 1996),
barley (Liu et a. 1996), wheat (Bryan et al. 1997; Roder
et al. 1998) and white pine (Echt et a. 1996) suggests
that it can be a valuable source of microsatellite markers
in some other plant species in addition to the most fre-
guently exploited GA motif.

In rice (Oryza sativa L.), early studies (reviewed by
McCouch et a. 1997) demonstrated that microsatellite
markers are distributed relatively uniformly throughout
the genome and detect a high level of alelic diversity in
cultivated varieties and distantly related species. A map
consisting of 121 microsatellite loci and providing ge-
nome-wide coverage in rice has been recently published
(Chen et a. 1997). These simple sequence repeats (SSRS)
were predominantly poly(GA) moetifs isolated from two
genomic libraries (Panaud et a. 1996; Chen et a. 1997),
with a smaller number of SSLP markers with tri- and oth-
er di-nucleotide motifs developed from microsatellite-
containing sequences from GenBank (Wu and Tanksley
1993; Akagi et a. 1996). There are an estimated 5700—
10 000 microsatellite sequences with different di-, tri-,
and tetra-nuclectide repeat units in the rice genome that
can be potentially used to construct a genetic map based
solely on microsatellite markers (McCouch et a. 1997).
The relative frequencies of 13 different di-, tri- and tetra-
nucleotide repeats in the rice genome have been estimat-
ed in hybridization experiments by Panaud et al. (1995)
and several markers containing GT, AT, TCT and ATT re-
peats have been mapped (Wu and Tanksley 1993; Akagi
et a. 1996; Panaud et al. 1996). However, the limited
number of loci characterized for each motif restricted the
evaluation of these less-abundant classes of SSR se-
guences for length variation and genome distribution.

In this study we have developed microsatellite mark-
ers in rice with different di- and tri-nucleotide repeats
based on the screening of a small-insert Tsp509-digested
genomic library and a search of public databases. In ad-
dition, we have compared the efficiency of marker devel-
opment between different SSR motifs and between SSR-
containing sequences obtained from library screening
versus those extracted from the GenBank database. A to-
tal of 312 microsatellite markers including 124 previous-
ly reported and 188 newly developed (97 isolated from
genomic libraries and 91 derived from sequences ex-
tracted from GenBank) have been mapped to construct a
microsatellite map for rice with a density sufficient for
both basic genetic studies and breeding applications. In a
companion paper by Cho et al. (1999), the markers have
been evaluated for genetic variability using a panel of 14
rice varieties representing diverse germplasm. The level
of variability at SSLP loci was then mapped onto the rice
genome and used to assess the organization of microsat-
ellite sequencesinrice.

Materials and methods

Isolation of clones containing microsatellite sequences

A previously constructed Tsp509-digested small-insert library in a
Zap I1/EcoRI phage cloning vector (Stratagene, Lalolla, Calif.), as
described by Chen et al. (1997) was screened for the presence of
microsatellite sequences by plaque hybridization with 32P-labeled
synthetic oligonucleotides according to the protocol described by
Panaud et a. (1995). For the first round of screening the library
was plated using a Escherichia coli ‘XL1-Blue MRF' strain with a
density of about 5000 plagues per 130-mm plate. Duplicate mem-
branes were lifted from each plate. One set was hybridized with a
labeled di- or tri-oligo-nucleotide probe and the other set was hy-
bridized with a labeled poly(GA) probe which served as a control
for the estimation of the relative frequency of clones with different
motifs. Filters were hybridized at 65°C and washed at 65°C for
GA, 62°C for GT and 56°C for CTT and CAT motifs, as recom-
mended by Panaud et al. (1995).

Putatively positive clones isolated after the second round of
purification and containing inserts of the expected size range
(3001200 bp) based on PCR-based prescreening, as described by
Chen et a. (1997), were selected and sequenced by the Cornell se-
quencing facility using standard dideoxy dye-terminator chemistry
on an Applied Biosystems 377 machine.

Six microsatellite markers were isolated from an enriched ge-
nomic library as described by Bligh et al. (1999).

Identification of simple sequence repeats in GenBank database

A total of 12 532 rice DNA sequences were obtained from Gen-
Bank (Release 96, August 1996) (see Table 1). Perfect tandem di-
and tri-nucleotide repeats with more than five repeat units were
extracted from sequences in a FASTA format using Perl scripts
and regular expression matching.

BLAST search and redundancy search

Unique flanking regions of microsatellite-containing sequences were
submitted to BLAST (Altschul et a. 1990) and subjected to a redun-
dancy search against previoudly isolated SSRs of the same motif in
order to eliminate redundant SSRs from the new set of markers.

Primer design and evaluation of polymorphism

PCR primers flanking microsatellite repeat sequences were select-
ed using the Primer 0.5 program (S. Lincoln, M. Daly, and E.
Lander, Cambridge, Mass.) and synthesized by Research Genetics
(Huntsville, Ala.). Newly synthesized primers were tested for am-
plification and polymorphism using DNA from the parents of
mapping populations. DNA was extracted from fresh leaves by the
potassium acetate method (Dellaporta et al. 1983). PCR was per-
formed in a PTC100 96V thermocycler (MJ Research Inc., Water-
town, Mass.) as described by Chen et a. (1997) with the exception
that 15 pl of reaction mixture was used instead of 25 pl, and 20 ng
of DNA, 1 pmol of each primer and 0.5 units of Taq were added
per reaction. The basic profile was: 5 min at 94°C, 35 cycles of
1 min at 94°C, 1 min at 55°C, 2 min at 72°C, and 5 min at 72°C
for final extension. Two different annealing temperatures, 61°C
and 67°C, were used to amplify specific microsatellite primer sets
(see Table 2). PCR products were separated on 4% polyacrylamide
denaturing gels and marker bands were revealed using the silver-
staining protocol as described by Panaud et al. (1996).

Mapping of SSLPs

Four mapping populations were used as the basis for placing mi-
crosatellite markers onto rice chromosomes. DH1 from the Inter-
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Table 1 Sizedistribution of microsatellite motifs observed in 12 532 rice sequences in the GenBank database

SSR motif Number of repeat units
5 6 7 8 9 10 11 12 13 14 15 1620 21-25 2630 >30 Tota
AG 173 91 69 40 27 15 13 9 9 3 3 6 1 1 2 463
AC 41 11 8 9 1 1 1 72
CG 51 8 1 60
AT 24 12 2 1 1 3 3 2 1 49
Total 644
CCG 312 157 72 24 6 3 2 1 577
ACG 198 57 17 10 1 283
AGG 135 84 40 8 2 269
ACC 82 17 10 4 1 1 115
AAG 63 23 13 1 9 1 1 111
ACT 12 4 2 1 19
AAC 9 3 1 1 14
AAT 3 2 1 6
Total 1394
AAGA 2 1 3
ACCT 2 2
ATAA 8 8
ATAG 1 1
ATCG 2 2
ATCT 0 0 0 1 1
CCTT 2 2
CTCG 2 3 5
GCAG 1 1
TCCA 1 1
TGTA 1 1
TTAA 4 1 5
Total 32

national Rice Research Institute (Los Bafios, Philippines), RIL1
from the Korean Rice Genome Project (National Agricultural Sci-
ence and Technology Institute, Suweon, Korea), RIL2 from Texas
A&M University (College Station, Tex.), and SL from Cornell
University (Ithaca, N.Y.) (see Table 1 in a companion paper by
Cho et a. (1999). For the DH1 and SL populations, markers were
placed using arandomly selected subset of 96 individuals from the
original mapping populations and the RFLP data sets described in
Huang et al. (1994) and Causse et a. (1994), respectively. For the
RIL1 and RIL2 populations, markers were placed using the com-
plete sets of recombinant inbred lines. PCR and microsatellite de-
tection were as described in Chen et al. (1997). Segregation was
scored and markers were integrated into the existing RFLP frame-
work maps for each population using MAPMAKER 2.0 (Lander et
al. 1987) on a Macintosh computer. The “ripple” test was used to
confirm marker order as determined by multipoint analysis. Mark-
ers with aripple of LOD >2.0 were integrated into the framework
maps, and those mapping with LOD <2.0 were assigned to the
most-likely intervals.

The distribution of polymorphism as a function of map posi-
tion was observed using the GeneFlow software designed by E.
Paul (epaul @idsonline.com, Alexandria, Va.). The program sup-
ports several conceptua display frameworks, including a genome
diagram that allows users to manipulate and display information
about polymorphism. In this study, we evaluated the genotypes of
a panel of rice varieties at a set of microsatellite loci distributed
throughout the genome and compared the allelic diversity of the
loci as afunction of their map position.

Results

Microsatellite markers derived from the GenBank
database

Approximately half of the microsatellite markers devel-
oped in this study were derived from rice sequences ex-
tracted from the GenBank database. Screening of 12 532
entries tagged as originating from rice identified 644 se-
guences with dinucleotide motifs, 1394 sequences with
different trinucleotide motifs and 32 sequences with tet-
ranucleotide motifs, with the GA and CCG motifs being
the most frequent among di- and tri-nucleotide SSRs, re-
spectively (Table 1). The rice sequences in the database
contained mostly unannotated ESTs derived from cv
Nipponbare (O. sativa japonica) (Sasaki et al. 1994;
Yamamoto and Sasaki 1997) as well as a smaller number
of ESTs from other sources (http://bioserver.myon-
gji.ac.kr/ricemac.html.), and the complete genomic se-
guences of several rice genes. Although a large number
of SSR-containing sequences were found, only 222
primer pairs were designed for sequences with the long-
est repeat motifs. Of these, 142 gave amplification prod-
ucts of the expected size. A total of 88 of the 142 primer
pairs produced informative polymorphic markers which
could be incorporated into the genetic linkage map. In
general, microsatellite sequences located in cDNA
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clones are short, with less than ten repeat units in a run
(Table 1). This is especialy true for GC-rich trinucle-
otide motifs, such as CCG, ACG, AGG and ACC. By
contrarst, GA- and AT-polydinucleotides as well as
AT-rich polytrinucleotites (AAT and AAG motifs, specif-
icaly) have a tendency to contain longer tracts of
perfect repeats. The positions of 27 microsatellites
within known or putative rice genes are described by
Cho et al. (1999).

Isolation of microsatellite markers from genomic
libraries

Another set of SSLP markers has been developed
based on sequences isolated from genomic libraries.
Most were derived from a Tsp509-digested small-insert
genomic library previously used for the development of
a set of GA-containing microsatellite markers reported
by Chen et a. (1997). In addition to the poly (GA) SSR
motif, poly (GT), (CAT) and (CTT) motifs were targeted.
These simple-sequence repeats were less abundant in the
rice genome than the GA motif, with 2—6-times fewer
positive clones isolated from the same number of
plagues during the first round of screening. There were
169 putative positive clones for (GT)n versus 385 for
(GA)n, 70 (CAT)n versus 165 (GA)n for CAT, and
57 (CTT)n versus 356 (GA)n for the CTT motif.

After sequencing 197 clones, 170 high-quality se-
guences were obtained: 59 with the GT motif, 54 with the
GA motif, 34 with CAT, and 23 with the CTT motif. All
sequences containing the same microsatellite motif were
subjected to the redundancy search using local BLAST.
Nonredundant sequences were then used for primer de-
sign. In this screening of the Tsp509-digested library, the
proportion of clones isolated more than once was higher
among CAT and CTT clones (17% and 12%, respective-
ly) than among GA and GT clones (about 4%). This sug-
gests that only a limited number of trinucleotide micro-
satellite sequencesis present in the Tsp509-digested libra-
ry, perhaps due to the genome-coverage bias inherent in
any enzyme-digested genomic library. Another factor in-
fluencing the efficiency of marker development was the
isolation of a relatively high proportion of sequences
(about 30%) with short tracts of non-interrupted repeats
(less than five repeat units) for CAT and GT motifs.
Many of these sequences contained degenerate microsat-
ellite-like motifs, frequently adjoined by other types of
simple repeats (Table 2). GT repeats were found in asso-
ciation with poly(AT)n motifs or with AT-rich tri- and tet-
ra-nucleotides in 26% and 22% of the cases, respectively.
Most of the sequences with fewer than five perfect repeat
units produced monomorphic markers and therefore
could not be genetically mapped. Several primer pairs
produced complex patterns of segregating bands with
dominant or codominant inheritance and they were
mapped as multiple loci. The highest efficiency was
achieved for the GA and CTT clones, which tended to
contain sequences with long tracts of perfect repeats that

could be easily converted into highly polymorphic genet-
ic markers.

Eleven more markers were obtained by redesigning
primers for SSR-containing sequences previously isolat-
ed from genomic libraries that failed to amplify (Panaud
et a. 1996; Chen et a. 1997); of these, five contained
the GA motif (clones GA264, GA588, CT109, CT210
and CT483) and six had trinucleotide motifs (ATT and
TCT clones from the physically sheared library: ATTZ20,
ATT35, TCT114, TCT116, TCT117, TCT121). The strat-
egy was to select new primers closer to the target micro-
satellite sequence. This procedure minimized the proba-
bility that if clones were chimeric, primer sequences
would reside in different segments of chimeric inserts.
When primers were redesigned to be closer to the SSR
motif, it increased the frequency of PCR amplification
giving a product of the predicted size with genomic
DNA as a template, while previously designed primers
amplified only with purified DNA from the correspond-
ing clone.

Marker information and nomenclature

Information related to the 188 microsatellite markers de-
veloped in this study, 91 from the sequence databases
and 97 from genomic libraries, is summarized in Table 2.
It includes locus designation, chromosome location,
primer sequence information, description of microsatel-
lite motif, and the size of PCR product amplified in ref-
erence lines IR36 or Nipponbare (predicted based on the
sequence used for primer design). Accession numbers
for the GenBank-derived microsatellites and clone
names for markers isolated from genomic libraries are
also included. All mapped markers were assigned RM
locus names according to the nomenclature guidelines
presented in earlier studies (Panaud et al. 1996; Chen et
a. 1997): RM1-100 numbers indicate markers from the
sheared library; RM101-199 numbers indicate Gen-
Bank-derived markers, RM201-345 are markers from
the Tsp509-digested library and RM345-351 are from
other genomic libraries. Markers that mapped to more
than one locus were given a suffix (A, B, C) following
the RM designation. Markers identified in this study that
showed sequence similarity to those reported by Akagi et
a. (1996) were included in Table 2 with the primer se-
guences designed in our labs and RM locus designations
along with previously reported OSR names.

Information related to the genetic variability of the
microsatellite markers reported in this study was includ-
ed in Table 2 but is discussed in a companion paper by
Cho et a. (1999).

Map construction
One hundred and eighty eight new microsatellite mark-

ers were integrated into an existing map consisting of
121 microsatellite markers previously reported by Chen
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Annealing

temp.

Reverse primer

Forward primer

Size

product in range
refer. line  (bp)

PIC PCR

No. of
dleles

Map  Repeat type
and length

Clone

name

Table 2 (continued)

Locus

name

55
55
55
55
55

gcatcggtectaactaaggy
gcacaaggtgageagtce
ctttcgaatctgaagatc
gcgaaggtacgasaggaaagy
taatgctccaccttcaccac

tacacctcatcgatcaatcg
actcatcagcatggecttgcte

152-198 ccggcegataasacaatgag
124-151 cctctcecgatacaccgtatg

85-107 ccaaagatgaaacctggattg

na
n.a

85 166
59 107
160
73 151
180

0
0
n
0
n

7
4
n.a
5

a

(CTT);T(CTT)yy

(TGG)5(TCT);,
(TCT)y,

(TAT)sC(ATT) 35
(CTT)1e

O M —iLO o

<™~ ©
LD~ — NN —
M
N
EOOOO
<FFFF
AN LD O
N~ 00 00 00 0O
=====
idididia

a OSR loci were previously identified by Akagi et al. (1996); clones designated with an M prefix were identified by Blight et al. (1999)

b Microsatellites in known or putative genes as described by Cho et al. (1999)
¢ Markers are monomorphic among O. sativa varieties but polymorphic in the SL cross
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et a. (1997). This map was originally constructed based
on the population of doubled-haploid lines (DH1 popula-
tion) derived from the inter-subspecific cross between
IR64 (indica) and Azucena (japonica) varieties (Huang
et al. 1994) and contains 145 RFLP markers that provide
anchor points on the high-density molecular genetic map
reported by Causse et al. (1994). The current linkage
map consists of 312 SSLPs, as shown in Fig. 1. Of the
188 new SSLPs, 141 were mapped directly onto the DH1
(IR64 x Azucena) population and 68 were mapped onto
the RIL2 (Lemont x Teging) population, including 17
markers that were not polymorphic in the DH parents.
An additional 19 polymorphisms were mapped onto
RIL1 (Milyang23 x Gihobyeo) and ten were mapped on-
to the SL population, including five SSLP markers that
were polymorphic only at the interspecific level.

Microsatellites in known and putative genes

Twenty six SSLP loci mapped in this study have been
identified within or adjacent to known rice genes
(markers with the letter b in Table 2 in this paper and in
Table 4 in a companion paper by Cho et al. 1999). For
example, RM150 resides in a lipoxigenase gene, and
three independently segregating loci were identified by
primers for RM 150, suggesting the presence of several
copies of this gene in the genome. In two cases, micro-
satellite markers occurred in genes coding for amylases;
marker RM 176 for the apha-amylase gene was mapped
to the end of the of the long arm of chromosome 6,
where Amy 2A had been previously mapped on the DH
population (Huang et al. 1994), and RM 182 mapped to
chromosome 7 and was identified in the beta-amylase
gene that was initialy reported by Akagi et al. (1996) as
the monomorphic marker OSR4.

In addition, three SSL P markers derived from genom-
ic clones showed significant similarity to rice sequences
in the GenBank database. Clone GT254, which was
mapped as marker RM315 on chromosome 1, showed
91% homology to a 70-bp segment of the rice glycine-
rich cell-wall protein gene, Angrp-1 (Acc. #U40708). In-
terestingly, this sequence itself contained a microsatellite
with a GT repeat unit that was mapped as SSLP locus
RM 184 on chromosome 10. This suggests that there are
two different locations in the rice genome where se-
guences related to the glycine-rich cell-wall protein gene
are found. Two other markers, RM324 (CAT73) and
RM334 (CTT48), showed significant but quite short
(50-75 bp) homology with an Oryza longistaminata re-
ceptor kinase gene and the O.sativa putative ADH-glu-
cose pyrophosphorylase subunit, SH2 gene, respectively.

Genome coverage and distribution of SSRsalong rice
chromosomes

The 312 markers reported here provide genome-wide
coverage with an average density of one SSLP marker
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Fig. 1 Molecular genetic map of rice. The framework is based on
the IR64/Azucena doubled-haploid population (DH1). Short arms of
chromosomes are at the top. Approximate positions of centomeres
are indicated by dark boxes on the chromosome bars. Framework
markers (those ordered at LOD score >2.0) are shown in regular
script and the remainder are in italics. Markers mapped onto other
populations and integrated into the DH1 map via anchored RFLP
markers are underlined and placed to the side of the DH map. Mi-
crosatellite loci have the designation “RM” for Rice Microsatellites.
New SSLP loci identified in this study are shown in boldface

every 6 cM. In general, SSLP markers are relatively
evenly distributed throughout the linkage maps of the 12
rice chromosomes without obvious clustering in centro-
meric or telomeric regions (Fig. 1). We detected no obvi-
ous biases in the localization of microsatellite loci with
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different motifs or derived from different origins. In
most cases new markers were mapped inside the bound-
aries of the previously reported framework map or very
close to the most distal RFLP markers. The addition of a
sufficient number of new markers allowed us to populate
several regions previously lacking in microsatellite
markers. Three SSLP markers, including RM190, which
corresponds to the waxy gene (Ayres et al. 1997), were
mapped onto the end of the short arm of chromosome 6,
two markers (RM337 and RM152) were placed at the
top of chromosome 8, and two (RM 147 and RM333) on
the bottom of chromosome 10 (Fig. 1). In all cases, these
new distal markers corresponded to regions already de-
fined by RFLP markers on the high-density maps
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(Causse et a. 1994; Harushima et al. 1998). The result-
ing overall map length for the IR64/Azucena DH popula-
tion is approximately 1822 cM.

Although the number of SSLP markers mapped onto
individual chromosomes is roughly proportional to their
cytogenetic length (Fukui and lijima, 1991) with no sig-
nificant differences between observed and expected
number of markers as indicated by Z-score analysis (data
not shown), the distribution of SSLP markers across the
chromosomes is not uniform. There are several regions
with a low density of markers, appearing as large gaps
on the map. In some cases, these intervals coincide with
comparable regions of the chromosomes on the high-
density SL map (Causse et a. 1994). For example, a
26.5 cM interval between markers RG179 and CDO337
on the DH map for chromosome 3 corresponds to a
21.5 cM gap between these loci on the SL map, and a
23.1 cM gap between RG20 and RM25 on chromosome
8 is precisely aligned with the biggest marker interval for
this chromosome on the SL map. Interestingly, the gap
of 27.7 cM at the top of chromosome 6 between markers
comprising the waxy region and RFLP marker RZ398,
corresponds to a region with a high recombination rate
previously described by Causse et a. (1994). In some
other cases, extension of the map was observed only for

the DH cross. These data suggest that the large distances
between many of the markers on the DH map are likely
to be the result of a comparatively higher recombination
rate in the doubled-haploid lines than in the interspecific
cross. Therefore, we have no evidence that these regions
with a very low density of SSLP markers (appearing as
gaps) correspond to physical segments devoid of micro-
satellite sequences.

To examine the distribution of microsatellite poly-
morphism throughout the genome, GeneFlow software
was used. This facilitated the detection of several clearly
defined regions covered by SSLP markers with uniform-
ly higher or lower levels of polymorphism. For example,
the long arms of chromosomes 3 and 6 contain clusters
of markers with only 2—4 alleles, while chromosome 11
preferentially contains markers with more than six al-
leles (Fig. 2). Although this finding is preliminary and
deserves further investigation at a higher level of resolu-
tion, it suggests that polymorphism may not be randomly
distributed in the rice genome.
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Discussion tetranucl eotide SSRs among the 2070 (1.5%) microsatel

Two major sources of microsatellite-containing sequenc-
es were used in this study to develop SSLP markers in
rice - the GenBank database and a Tsp509-digested
small-insert genomic library. The GenBank database
search was focused on the identification of all possible
di-, tri- and tetra-nucleotide simple sequence repeats
with a number of repeat units greater than five. The set
of 12 532 rice DNA sequences consisted of partially se-
guenced cDNA clones and several known rice genes for
which complete sequence data were available. This set
of DNA sequences alowed the development of SSLP
markers for some genes of known or putative function
and provided a good opportunity to estimate the frequen-
cy, length and position of microsatellite sequences with
different motifsin or near expressed genes in the rice ge-
nome.

It was found that 60% of EST-derived microsatellite
seguences in rice were represented by the following four
trinucleotide motifs: CCG, ACG, AGG and ACC. Simi-
lar observations were made in maize, where trinucleotide
motifs comprised about 50% of the SSR-containing se-
guences extracted from sequence databases, with
CCG/GGC and CCT/AGG motifs being the most abun-
dant (Chin et a. 1996). Interestingly, there were only 32

lite-containing sequences identified for rice in compari-
son to a much higher proportion of this class of micro-
satellites found during similar database searches in
maize (27%) (Chin et a. 1996) or in rat (25%) (Serikawa
et a. 1992). A notable deficiency of AT/TA repeats,
which were predicted to be the most frequent class of
microsatellite sequences in plant genomes (Mongante
and Olivieri 1993; Wang et al. 1994), suggests that they
are rare in the portion of the rice genome captured as
cDNA. It is known from the detailed compositional anal-
ysis of SSR sequences from primates that AT-rich di- and
tri-nucleotides occur predominantly in non-coding re-
gions, frequently being associated with repetitive DNA
(Jurka and Petiyagoda 1995). In this respect, the data-
base search in this study was limited by the set of rice
DNA sequences available in GenBank.

As an aternative, screening of genomic libraries al-
lows the identification of unlimited numbers of clones
containing diverse microsatellite motifs from a more ran-
dom representation of the genome. In this study, a
Tsp509-digested small-insert library was used to isolate
microsatellite sequences containing four different motifs
and to evaluate the utility of the resulting markers for
mapping. While the frequency of the (GT)n-containing
sequences was relatively high, a large number of puta-
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tive positive GT clones contained only very short tracts
of repeat units (less than five). Nevertheless, there exist
GT-containing sequences with long tracts of pure GT re-
peats or with adjoining AT repeats, which have been
shown to be highly polymorphic markers. Interestingly,
in maize (Taramino and Tigney 1996) and eastern white
pine (Echt et al. 1996) stretches of GT repeats were also
shorter compared to GA repeats and were frequently as-
sociated with the AT repeats.

Among the trinucleotides, poly(CTT)n repeats com-
prise a moderately abundant class of SSR sequences with
long tracts of repeat units, which can be considered as a
valuable source of informative genetic markers in rice.
In contrast to the CTT motif, (CAT)n repeats represent a
class of relatively short and highly degenerate microsat-
ellite sequences in the rice genome with a low potential
for length variation. Comparison of trinucleotide repeats
in the human genome showed that (CAT)n loci are three
times less polymorphic than (ATT)n or (CTT)n loci
(Gastier et a. 1995), which is similar to our observations
in rice. Considering the coding equivalency of TAC (op-
posite reading of CAT) to ATG, which is the initiation
codon on the complementary DNA strand, the lack of
long microsatellite sequences with this SSR motif of
variable length in eukaryotic genomes can be explained
by the rarity and constrained placement of these codons.

As described in Cho et al. (1999), GenBank-derived
microsatellites had lower variability values (number of
repeat units, number of aleles, alele size range and ex-
pected genetic diversity) than microsatellites isolated
from genomic libraries. This difference reflected the
constraints on DNA sequence variation in transcription-
aly active portions of the genome. From this point of
view, screening of genomic libraries was more efficient
than the GenBank search, since more informative mark-
ers capable of detecting more genetic differences were
developed based on genomic clones. On the other hand,
the GenBank-derived markers produced a high propor-
tion of intra-subspecifically conserved microsatellite
markers with distinct allele patterns for the indica and
japonica subspecies, and these can be useful for evolu-
tionary studies and applications in breeding programs in-
volving the two different subspecies of O. sativa.

In rice, as in many other species for which full-
genome SSLP-based maps are available, microsatellite
markers are distributed relatively uniformly throughout
the genome, and in this case provide good coverage of
all 12 chromosomes. There are no obvious biases in
terms of chromosomal location for SSLP markers con-
taining different motifs or derived from different origins.
Nevertheless, there are some regions on the map with a
poor representation of microsatellite markers or else con-
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Fig. 2 Maps of threerice chro-
mosomes showing the distribu-
tion of polymorphism at micro-
satellite loci. Numbers inside of
geometric shapes indicate the
number of alleles observed at
each locus for the 13 rice culti-
vars analyzed. SSLP markers
with the GA motif appear in
Circles; GT motifs appear in
Sguares, trinucleotides appear
in Triangles and other types of
SSR motifs appear in Dia-
monds. Orientation of the chro-
mosomes and positions of the
markersare asin Fig. 1
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taining markers with a low level of genetic variability.
The question of whether these regions reflect differences
in the density of microsatellite sequences along the phys-
ical length of the chromosomes or differences in the rate
of recombination is still open. Non-random distribution
of microsatellite polymorphism has been detected in the
mouse, where chromosomes 10 and X contained fewer
SSLP markers and showed substantially lower polymor-
phism rates than the other chromosomes (Dietrich et al.
1996). In hexaploid wheat, fewer SSLP markers and a
lower number of alleles per SSLP locus were detected
for the D-genome (Bryan et a. 1997; Roder et a. 1998).
A positive correlation between the number of SSLP and
RFLP markers developed within the A, B and D geno-
mes suggested that different amounts of DNA polymor-
phism are present in the three genomes of this allohexa-
ploid species (Roder et a. 1998). In rice, the intensive
selection for agronomically important traits during the
process of domestication and breeding, which has been
accompanied by some population bottlenecks, might
have led to a non-random distribution of allelic diversity
along chromosomes. It is possible that chromosomal seg-
ments with a low level of SSLP diversity could corre-
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spond to genomic regions where microsatellite loci are
linked to genes of agricultural importance and are affect-
ed by linkage drag. Alternatively, the polymorphism dis-
tribution may reflect some structural or functional prop-
erties of the DNA in the less-variable segments of the
genome. In this case, a comparison of cultivated variet-
ies with closely related wild species of rice that have not
been subjected to artificial selection, as well as an evalu-
ation of different types of markers, would provide the
opportunity to resolve the issue.

Our success in developing microsatellite markers with
different motifs and extracted from different sources pro-
vides evidence that this approach can be effective for fur-
ther saturation of the microsatellite map of the rice ge-
nome. Advanced technologies in sequencing and the grow-
ing pool of published sequence information will provide a
major resource for the future development of these PCR-
based markers. Further investigation of the distribution and
variability of microsatellite sequences can provide new in-
formation about the organization of this class of repetitive
DNA elements in the rice genome, as well as vauable in-
formation for researchers wishing to use microsatellite
markers for genetic studies and breeding applications.



Table 2 and additional information about the poly-
morphism potential of over 300 rice microsatellite mark-
ers (number of aleles, polymorphism information con-
tent, range of variation) can be found in Cho et al. (1999)
and in the RiceGenes database (http://ars-genome.cor-
nell.edu/ricel). Primers for the previously developed 121
markers and 188 reported here are available from Re-
search Genetics (http://www.resgen.com/).

Note: RM260 was previously reported on chromosome |1 (Chen et
al., 1997) but the map position is corrected in this study and
RM 260 now appears on chromosome 12.
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